SET - 2

I B. Tech I Semester Regular Examinations, January, 2015

GR 14

Engineering Physics (Common to BME, EEE, CSE, IT)

Time: 3 hours

PART – A Answer ALL questions All questions carry equal marks *****

2 * 10 = 20 Marks

1). a	Find the Miller indices of a plane having intercepts a, 3b, 2c along crystallographic axes x, y, z.	[2]
b	Explain the physical significance of Wave Function.	[2]
c	Explain Frenkel and Schottky Defects.	[2]
d	Discuss the failures of Classical Free Electron Theory.	[2]
e	Write a note on Piezoelectricity.	[2]
f	What are Soft and Hard Magnetic Materials?	[2]
g	Explain the following (i) Meta Stable State (ii) Population Inversion	[2]
h	Explain attenuation in Optical Fibers.	[2]
i	Briefly explain (i) Nano Materials (ii) Surface to Volume ratio	[2]
j	Discuss any two applications of Nano materials.	[2]

Max Marks: 70

РТО...

PART – B Answer any FIVE questions All questions carry equal marks *****

10 * 5 = 50 Marks

2.	a) Show that FCC crystals are closely packed than BCC and SC crystals by working out the packing factors.	[5]
	b) Derive an expression for Schrodinger's Time Independent wave equation.	[5]
3.	a) Discuss the motion of an electron in a periodic potential.	[5]
	b) What is Hall Effect? Derive an expression for Hall Effect.	[5]
4.	a) Derive an expression for internal fields in solids.	[6]
	b) Explain Hysteresis curve on the basis of Domain Theory of Ferromagnetism.	[4]
5.	a) Derive the relation between Einstein's coefficients.	[6]
	b) Explain Optical Fiber Communication Link with block diagram.	[4]
6.	a) Describe any three processes by which Nano Materials are fabricated.	[6]
	b) Explain the Scanning Electron Microscopy.	[4]
7.	a) Write a note on Edge and Screw dislocations and explain the significance of Burger's Vector.	[5]
	b) Derive an expression for effective Mass of Electron.	[5]
8.	a) Discuss different types of Polarizations in Dielectrics.	[5]
	b) Derive an expression for Acceptance Angle and Numerical Aperture of an Optical Fiber.	[5]
